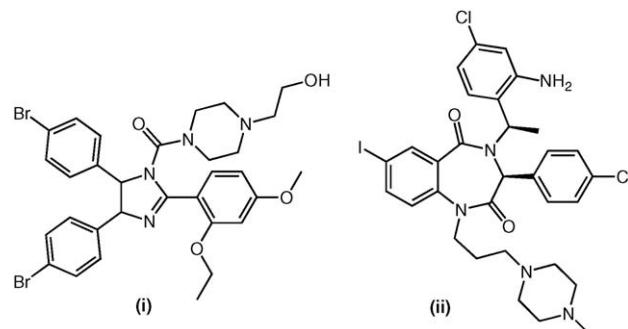


monitor

MOLECULES

Inhibitors of the Hdm2:p53 complex as antitumour agents

The tumour suppressor transcription factor p53 is pivotal in the cellular response to DNA damage (or other stress), playing a central role in cell-cycle arrest and apoptosis (programmed cell death). Notably, loss-of-function p53 gene mutations occur in approximately half of all human cancers, leading to a more aggressive and drug-resistant phenotype. The Hdm2 protein (also known as Mdm2) is the principal negative regulator of p53 [1], acting via two distinct mechanisms:


- (1) Inhibition of wild-type (wt) p53 function through direct binding, preventing p53 from binding to the transcriptional machinery.
- (2) Targeting p53 for ubiquitination and destruction via the proteasome pathway.

In wt p53, the tumour suppressor function can be compromised by overexpression or deregulation of Hdm2; inhibition of Hdm2:p53 interaction to restore p53 function has recently, therefore, become a major area of interest in cancer drug discovery.

Recent years have seen the first reports of small-molecule inhibitors of the Hdm2:p53 interaction as potential cancer therapeutic agents. Perhaps the best-known class of inhibitors are the *cis*-imidazoline derivatives [Nutlins, e.g. (i)] reported by Vassilev *et al.* [2], possessing Hdm2-inhibitory-dependent *in vitro* and *in vivo* antitumour properties.

Grasberger *et al.* [3] have recently reported the discovery of a new benzodiazepinone series of Hdm2:p53 inhibitors using ThermoFluor® microcalorimetry, which detects a shift in the

synergistic with the standard chemotherapeutic agents (doxorubicin, 5-fluorouracil and irinotecan) in an A375 melanoma xenograft model *in vivo*.

intrinsic melting temperature of protein that is bound to the test compound. Koblish *et al.* [4], from the same group (Johnson & Johnson Pharmaceutical Research and Development, Spring House, PA, USA), have now reported further data supporting the potential of this class of agent for the treatment of wt p53-expressing tumours. For example, TDP665759 (**ii**) inhibited the growth of a panel of wt p53-expressing cancer cell lines with an average IC_{50} of 0.7 μ M (but lacked potency in mutant or null p53-expressing cell lines).

In vitro treatment of HepG2 cells with (ii) led to the stabilization of the p53 protein, up-regulation of p53 target genes in a DNA-damage-independent manner, as well as the induction of apoptosis. Compound (ii) was also found to be

- 1 Buolamwini, J.K. *et al.* (2005) Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. *Curr. Cancer Drug Targets* 5, 57–68
- 2 Vassilev, L.T. *et al.* (2004) *In vivo* activation of the p53 pathway by small molecule antagonists of MDM2. *Science* 303, 844–848
- 3 Grasberger, B.L. *et al.* (2005) Discovery and cocrystal structure of benzodiazepinedione Hdm2 antagonists that activate p53 in cells. *J. Med. Chem.* 48, 909–912
- 4 Koblish, H.K. *et al.* (2006) Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation *in vitro* and sensitize tumors to doxorubicin *in vivo*. *Mol. Cancer Therap.* 5, 160–169

Andrew D. Westwell
westwella@cf.ac.uk